Photodynamics of Zr-based MOFs: effect of explosive nitroaromatics.
نویسندگان
چکیده
The present work describes the spectroscopic and photodynamics of two different Zr mixed-linkers MOFs (Zr-NDC/Tz and Zr-NDC/CN) and their interaction with nitroaromatics. Both MOFs exhibit comparable spectroscopic behaviours, with a broad emission band mainly due to the naphthalene excimers within their three-dimensional structure. Flash photolysis experiments show a slow radiative electron-hole (e--h+) recombination, reflected as a large negative absorption band. The interaction with the selected nitroaromatic compounds produces a static fluorescence quenching of Zr-NDC/Tz. Interestingly, the addition of trinitrophenol (TNP) induces the formation of a charge-transfer complex, helped by intermolecular H-bonds formation, as shown by the steady-state and ps-time-resolved emission experiments. Remarkably, the (e--h+) recombination is strongly affected due to the inhibition of the ligand-to-cluster charge transfer process within the MOF. The quenching constants for the nitroaromatics lacking -OH groups are in the order of 102 M-1, while it is two orders of magnitude higher for the TNP (1.8 × 104 M-1). Both MOFs are highly selective toward TNP. We also demonstrate the possibility to recycle these MOFs without significant loses in their ability to detect TNP. Our findings give the clues to understand the fluorescence quenching mechanism of new Zr-based MOFs in presence of explosive-like molecules, opening the way to improve these nanomaterials as highly selective sensor of nitroaromatics.
منابع مشابه
Effect of pore sizes on catalytic activities of arenetricarbonyl metal complexes constructed within Zr-based MOFs.
Arenetricarbonyl metal complexes ([-phM(CO)3-] and [-biphM(CO)3-]; ph = phenylene, biph = biphenylene, M = Mo, Cr) constructed within Zr-based MOFs act as highly active and selective catalysts for epoxidation of cyclooctene. Catalytic activities of these complexes are enhanced with increasing the pore sizes of Zr-based MOFs.
متن کاملA fluorescent paramagnetic Mn metal–organic framework based on semi-rigid pyrene tetracarboxylic acid: sensing of solvent polarity and explosive nitroaromatics
An Mn metal-organic framework (Mn-MOF), Mn-L, based on a pyrene-tetraacid linker (H4 L), displays a respectable fluorescence quantum yield of 8.3% in spite of the presence of the paramagnetic metal ions, due presumably to fixation of the metal ions in geometries that do not allow complete energy/charge-transfer quenching. Remarkably, the porous Mn-L MOF with ∼25% solvent-accessible volume exhib...
متن کاملDevelopment of A New Electrochemical Sensor based on Zr-MOF/MIP for Sensitive Diclofenac Determination
In this study, a new molecularly imprinted polymer with nanoporous material of zirconium metal-organic frameworks (Zr-MOF/MIP) for diclofenac (DFC) measurement is presented. The Zr-MOF/MIP was prepared by electropolymerization method, the Zr-MOFs were used to increase electrode surface and the DFC and para- aminobenzoic acid (pABA) were used as template and functional monomer, respectively. Zr-...
متن کاملStereoselective Halogenation of Integral Unsaturated C‐C Bonds in Chemically and Mechanically Robust Zr and Hf MOFs
Metal-organic frameworks (MOFs) containing Zr(IV) -based secondary building units (SBUs), as in the UiO-66 series, are receiving widespread research interest due to their enhanced chemical and mechanical stabilities. We report the synthesis and extensive characterisation, as both bulk microcrystalline and single crystal forms, of extended UiO-66 (Zr and Hf) series MOFs containing integral unsat...
متن کاملFluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics.
A novel fluoranthene based fluorescent chemosensor for the detection of picric acid (PA) at the parts per billion (ppb) level was evaluated. Static fluorescence quenching was the dominant process by intercalative π-π interaction between fluoranthene (S(1)) and nitroaromatics.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 19 25 شماره
صفحات -
تاریخ انتشار 2017